Strange Loop
Today’s wave of AI technology is still being driven by the ANN neuron pioneered decades ago. Hierarchical Temporal Memory (HTM) is a realistic biologically-constrained model of the pyramidal neuron reflecting today’s most recent neocortical research. This talk will describe and visualize core HTM concepts like sparse distributed representations, spatial pooling and temporal memory. Strong AI is a common goal of many computer scientists. So far, machine learning techniques have created amazing results in narrow fields, but haven’t produced something we could all call “intelligent”. Given recent advances in neuroscience research, we know a lot more about how neurons work together now than we did when ANNs were created. We believe systems with a more realistic neuronal model will be more likely to produce Strong AI. Hierarchical Temporal Memory is a theory of intelligence based upon neuroscience research. The neocortex is the seat of intelligence in the brain, and it is structurally homogeneous throughout. This means a common algorithm is processing all your sensory input, no matter which sense. We believe we have discovered some of the foundational algorithms of the neocortex, and we’ve implemented them in software. I’ll show you how they work with detailed dynamic visualizations of Sparse Distributed Representations, Spatial Pooling, and Temporal Memory.
Matt Taylor
NUMENTA, INC.
Matt manages Numenta’s open source projects, helps the HTM Community, and produces educational videos about HTM.
Source
Hi, this is Matt Taylor from the video above. If you want to learn more, go to http://numenta.org. We have nice forums.
See Matt's visualizations on Numenta's YouTube channel at https://www.youtube.com/HTMSchool
Excellent presentation.
This is just going great 👍
Excellent visualizations to help understand such breakthroughs! Keep it up